Implementasi Data Mining Menggunakan Algoritma K-Means untuk Pengelompokan Data Keluhan Pelanggan pada Perumda Tirta Musi Palembang
Keywords:
Klasterisasi K-Means, Klaster Data, Keluhan Pelanggan, Knowledge Discovery in Databases, Pelayanan PublikAbstract
This study discusses the application of the K-Means Clustering algorithm to assist Perumda Tirta Musi Palembang in grouping customer complaint data. The main challenge faced is the high volume of complaints received annually, yet there is no existing system or method capable of efficiently clustering and analyzing this data. Using the Knowledge Discovery in Databases (KDD) approach, the process involves data collection, pre-processing, transforming categorical data into numerical form, and clustering using the K-Means algorithm. A web-based support system was also developed to make this process practical for operators or administrators, not just a one-time process. The final results divide customers into two main clusters: the priority cluster (high complaints) and the stable cluster (low complaints). This segmentation supports more accurate decision-making in efforts to improve service quality.
References
BPS, “Statistik Air Bersih 2018-2022,” Bps.Go.Id, 2023.
G. G. Wirakanda dan I. S. Putri, “Analisis Penanganan Keluhan Pelanggan (Studi Kasus Di Kantor Pos Bandung 40000),” J. Bisnis dan Pemasar., vol. 10, no. 2, hal. 1–11, 2020, [Daring]. Tersedia pada: https://ejurnal.poltekpos.ac.id/index.php/promark/article/view/1020/698
Sambodo Rio Sasongko, “Faktor-Faktor Kepuasan Pelanggan Dan Loyalitas Pelanggan (Literature Review Manajemen Pemasaran),” J. Ilmu Manaj. Terap., vol. 3, no. 1, hal. 104–114, 2021, doi: 10.31933/jimt.v3i1.707.
E. H. Wisanta dan Y. N. Marlim, “Analisis Algoritma K-Means Untuk Clustering Kepuasan Pelayanan: Mall Pelayanan Publik Pekanbaru,” Semin. Nas. Inform. Pros. Senat. 2021, hal. 223–228, 2021.
K. Annisa, B. S. Ginting, dan M. A. Syar, “Penerapan Data Mining Pengelompokan Data Pengguna Air Bersih Berdasarkan Keluhannya Menggunakan Metode Clustering Pada Pdam Langkat,” J. Sist. Inf. Kaputama, vol. 6, no. 2, hal. 165–179, 2022, doi: 10.59697/jsik.v6i2.167.
A. Pangestu dan T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma K-Means Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,” JUST IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 11, no. 3, hal. 67–71, 2022, [Daring]. Tersedia pada: https://jurnal.umj.ac.id/index.php/just-it/article/view/11591
P. Dwi Lestari dan M. Mulyawan, “Datamining Pada Penjualan Air Bersih Di Spam Akidah Menggunakan Algoritma K-Means Clustering Menggunakan Rapidminer,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, hal. 412–416, 2023, doi: 10.36040/jati.v7i1.6315.
S. A. Perdana, S. F. Florentin, dan A. Santoso, “Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasuss Aplikasi Alfagift,” Sebatik, vol. 26, no. 2, hal. 420–427, 2022, doi: 10.46984/sebatik.v26i2.2134.
V. A. Ekasetya dan A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelompokan Data Kecelakaan Lalu Lintas Di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, hal. 20–28, 2020, doi: 10.35315/informatika.v12i1.8159.
B. G. Sudarsono, M. I. Leo, A. Santoso, dan F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 1, hal. 13–21, 2021, doi: 10.30813/jbase.v4i1.2729.
I. Y. Yudo Bismo Utomo, Iin Kurniasari, “Penerapan Knowledge Discovery in Database,” J. Tek. Inform. Kaputama, vol. 7, no. 1, 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Rekayasa Informatika

This work is licensed under a Creative Commons Attribution 4.0 International License.





