Analisis Sentimen Masyarakat Terhadap Indonesia Vs Uzbekistan Menggunakan Smote (Synthetic Minority Over-sampling Technique) Dan Knn (K-Nearest Neighbor)

Authors

  • Ade Rocky Saputra Universitas Multi Data Palembang
  • Muhammad Anugrah Hakiki Universitas Multi Data Palembang
  • Hafiz Irsyad Universitas Multi Data Palembang

Keywords:

Football, KNN, Sentiment Analysis, SMOTE, ANALISIS SENTIMEN

Abstract

Football is one of the most popular sports in the world, including in Indonesia. The match between Indonesia and Uzbekistan in the AFC U-23 Championship attracted widespread public attention. This study aims to analyze public sentiment towards the match using the Synthetic Minority Over-sampling Technique (SMOTE) and the K-Nearest Neighbor (KNN) algorithm. The study also examines the impact of SMOTE implementation on the performance of the sentiment classification model. The results indicate that the application of SMOTE led to a decrease in the performance of the KNN model, with a 10% reduction in accuracy, a 16% reduction in precision, a 3% reduction in recall, and an 11% reduction in F1-Score. Additionally, sentiment analysis revealed that the majority of public sentiment towards the match outcome was negative.

Kata Kunci: Sentiment Analysis; KNN; SMOTE; Sentimen; Football 

References

A. N. Kasanah, Muladi, dan U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN”, RESTI, Vol. 3 No. 2(2019) 196 - 201, Augustus 2019.

http://jurnal.iaii.or.id/index.php/RESTI/article/view/945

S. D. Prasetyo, S S Hilabi, dan F Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN”, KomtekInfo, Vol. 10 No. 1 Hal: 1-7, Maret. 2023.

https://jkomtekinfo.org/ojs/index.php/komtekinfo/article/view/330

H, Sulastri , A, I, Gufroni, “PENERAPAN DATA MINING DALAM PENGELOMPOKAN PENDERITA THALASSAEMIA” , Jurnal Nasional Teknologi Dan Sistem Informasi, VOL. 03 NO. 02 (2017) 299-305.

https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/335

F. S. Jumeilah , “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian”, RESTI, Vol. 1 No. 1 (2017) 19 – 25.

http://www.jurnal.iaii.or.id/index.php/RESTI/article/view/11.

J. J. A. Limbong ,”Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Neighbor”,UKSW, 2022

https://repository.uksw.edu/handle/123456789/23206

A, Guswandri, R, P, Cahyono, “PENERAPAN SENTIMEN ANALIS MENGGUNAKAN METODE NAÏVE BAYES DAN SVM”,Jurnal Ilmu Data ,Volume 2 (12), 2022

http://ilmudata.org/index.php/ilmudata/article/view/295

A, Indriani, “Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier “, SNATI, 2014

https://journal.uii.ac.id/Snati/article/view/3284

A, A, Magriyanti, “ANALISIS PENGEMBANGAN ALGORITMA PORTER STEMMING DALAM BAHASA INDONESIA “, OSF, 2018

https://osf.io/preprints/inarxiv/7ge4v/

I. H. Kusuma dan N Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor”, JPIT, Vol.8, No.3 Hal: 1-6, September. 2023.

http://ejournal.poltekharber.ac.id/index.php/informatika/article/view/5734

D Normawati, S A Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter” , J-SAKTI, Volume 5 Nomor 2, September 2021, pp. 697-711

http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

C. A. Pamungkas dan W. W. Widiyanto, “KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA DI INDONESIA TAHUN 2022 DENGAN SUPPORT VECTOR MACHINE”, SINOV, Vol 2 No. 3 , pp. 1 - 7, November. 2022.

https://journal.sinov.id/index.php/juisik/article/view/407

Published

2024-07-25