Analisis Sentimen Terhadap Boikot Produk Israel Menggunakan Algoritma Naive Bayes Dan SMOTE

Authors

  • Putra Ganda Dewata Universitas Multi Data Palembang
  • Azzar Rizky
  • Hafiz Irsyad

Keywords:

Palestine-Israel Conflict, Indonesian People, Boycott Action, Sentiment, Naive Bayes, SMOTE

Abstract

The conflict between Palestine and Israel, which has been going on for approximately 6 decades, has triggered a wide variety of reactions in various countries. The reaction carried out by the Indonesian people is the Boycott of Products affiliated with the state of Israel as a form of solidarity and moral protest against this prolonged conflict. This research was conducted to analyze the sentiment of the Indonesian people towards this Boycott Action on the YouTube Shorts video sharing platform. Sentiment analysis conducted in this study uses the Naive Bayes algorithm and text preprocessing techniques, namely the SMOTE technique with 2433 public comment data. The final results show that the Naive Bayes algorithm has a high level of effectiveness in predicting sentiment on comment text with an accuracy of 94%. The accuracy level can be achieved that the algorithm model is trained with data division of 60% training data and 40% testing data.

References

O. : Mohd, R. Mohd, and N.  Abstrak, “KONFLIK ISRAEL-PALESTIN DARI ASPEK SEJARAH MODEN DAN LANGKAH PEMBEBASAN DARI CENGKAMAN ZIONIS.”

M. F. Millenio, “How the Judgement Effective? The Role of United Nations in Conflict Resolution Between Palestine and Israel,” The Digest: Journal of Jurisprudence and Legisprudence, vol. 2, no. 2, pp. 197–230, 2021.

M. Wendra and A. Sutrisno, “Tantangan Penyelesaian Konflik Internasional yang Dilematik mengenai Hak Veto dalam Dewan Keamanan PBB (Studi kasus Palestina dengan Israel) ARTICLE HISTORY,” Journal of Contemporary Law Studies, no. 2, pp. 171–180, 2024, doi: 10.47134/lawstudies.v2i2.2373.

B. Liu, “Sentiment Analysis and Subjectivity.”

A. T. Susilawati, N. A. Lestari, and P. A. Nina, "Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes," Nian Tana Sikka: Jurnal Ilmiah Mahasiswa, vol. 2, no. 1, pp. 26-35, 2024.

N. F. Az-haari, D. Juardi, and A. Jamaludin, "Analisis Sentimen Terhadap Boikot Brand Pro-Israel pada Twitter Menggunakan Metode Naïve Bayes," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 4256-4261, 2024.

L. A. Hayurian and N. Hendrastuty, “COMPARISON OF NAÏVE BAYES ALGORITHM AND SUPPORT VECTOR MACHINE IN SENTIMENT ANALYSIS OF BOYCOTT ISRAELI PRODUCTS ON TWITTER,” vol. 5, no. 3, pp. 731–738, 2024, doi: 10.52436/1.jutif.2024.5.3.1813.

M. N. Huda, D. A. Fauzan, M. R. S. P. Pamungkas, N. S. Ratnadewi, and A. A. Vahendra, “Optimalisasi Model Klasifikasi Sentimen Netizen Terhadap Merek Tas Luar Negeri,” Jurnal KomtekInfo, pp. 21–28, Mar. 2023, doi: 10.35134/komtekinfo.v10i1.360.

E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades, “Ontology-based sentiment analysis of twitter posts,” Expert Syst Appl, vol. 40, no. 10, pp. 4065–4074, Aug. 2013, doi: 10.1016/j.eswa.2013.01.001.

C. Alifia Putri and S. Al Faraby, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers,” vol. 6, no. 2, pp. 181–193, 2020, [Online]. Available: http://jurnal.mdp.ac.id

R. Noviana and I. Rasal B A Jurusan, “PENERAPAN ALGORITMA NAIVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN BOY BAND BTS PADA MEDIA SOSIAL TWITTER,” JTS, vol. 2, no. 2.

A. C. Khotimah and E. Utami, “COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, 2022, doi: 10.20884/1.jutif.2022.3.3.254.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

N. Saputra, T. B. Adji, and A. E. Permanasari, “ANALISIS SENTIMEN DATA PRESIDEN JOKOWI DENGAN PREPROCESSING NORMALISASI DAN STEMMING MENGGUNAKAN METODE NAIVE BAYES DAN SVM Oleh,” 2015.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA JURNAL, vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.

V. Ibrahim, J. A. Bakar, N. H. Harun, and A. F. Abdulateef, “A word cloud model based on hate speech in an online social media environment,” Baghdad Science Journal, vol. 18, pp. 937–946, Jun. 2021, doi: 10.21123/bsj.2021.18.2(Suppl.).0937.

B. K. Hananto, A. Pinandito, and A. P. Kharisma, “Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1641/1/012102.

A. Z. Amrullah, A. Sofyan Anas, M. Adrian, and J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal, vol. 2, no. 1, 2020, doi: 10.30812/bite.v2i1.804.

H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” International Journal of Electrical and Computer Engineering, vol. 11, no. 3, pp. 2407–2413, Jun. 2021, doi: 10.11591/ijece.v11i3.pp2407-2413.

R. Merdiansah and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.

D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion matrix,” Comput Oper Res, vol. 152, Apr. 2023, doi: 10.1016/j.cor.2022.106131.

Published

2024-07-25